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The classes of hydromechanics (mechanics of liquids and gases) problems studied by 
Siberian scholars has been defined to a significant degree by the interest of the founder of 
the Siberian Branch, Academician M. A. Lavrent'ev. His scholarly legacy includes studies on 
surface wave theory, the hydrodynamics of jet and detached flows, ground water motion be- 
neath hydrotechnical installations, displacement of solid deformable bodies under the action 
of external forces, and hydrodynamic cumulation theory. A professional mathematician, 
Lavrent'ev supported studies to develop new mathematical methods for analytical and numerical 
simulation and analysis of natural processes. As a long-term student of nature, he pro- 
posed, and encouraged others to propose, experiments which might clarify the basic principles 
of yet incompletely understood phenomena. He presented many ideas and propositions for new 
formulations of hydromechanics problems, for example, on modeling of an explosion-driven mass 
of soil as an ideal incompressible liquid, on study of turbulent ring structures, explanation 
of the "Novorossisk Bora" (cold northern wind), solution of seeming paradoxes in asymmetric 
flow over a sphere, a new mechanism of wind wave formation, description of liquid flow in a 
bottom trench, problems involving tsunamis, etc. A description of original formulations in 
various fields of hydrodynamics with a detailed analysis of the physical factors controlling 
these phenomena can be found in his monograph (written in collaboration with B. V. Shabat) 
[i], which appeared in 1973. 

Thanks to the initiatives and efforts of Lavrent'ev, his companions, successors, and 
hydromechanics studients of the Siberian branch, hydromechanics blossomed. Its achievements 
have been recognized internationally and are an object of pride for the Siberian scholars. 
The present study is dedicated to a brief overview of these achievements. 

Group Analysis of Differential Equation>. The most widely used mathematical model for 
liquid and gas motion involves differential equations with supplemental conditions. An 
important stage in study of such models is qualitative analysis, consisting of clarification 
of correctness of the model and a search for sufficiently broad classes of particular 
solutions. The latter is usually a nontrivial task in view of the nonlinearity of the 
hydromechanics equations. 

In solving the problem of seeking particular solutions, the concept of using special 
symmetry properties of the differential equations has proved fruitful. This special 
symmetry involves the fact that the equations permit a continuous group of transformations 
of the set of independent and dependent variables. The concept of a permissible group had 
already been introduced in the studies of the Norwegian Sophus Lie at the end of the 19th 
century. But after Lie's works his theory was not widely employed in hydromechanics studies. 

Beginning in 1958, L. V. Ovsyannikov, followed by his students, expended much effort on 
the "reanimation" of Lie's inheritance in the direction of applications of the theory of 
continuous group transformations to the problems of mathematical physics in general, including 
hydromechanics. This field of study revealed the appelation "differential equation group 
analysis." The major achievements in this field of study were presented in monographs by 
Ovsyannikov [2] and ibragimov [3]. 

Algorithms were developed in detail for group classification of differential equations 
and construction of classes of invariant and partially invariant solutions~ Group classifi- 
cations were performed for the equations of nonlinear thermal conductivity, those of an 
ideal incompressible liquid, the gas-dynamics equations, the Navier--Stokes equations, 
boundary-layer equations, those of transsonic gas flow, and other systems of hydromechanics 
equations. 
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For the equations of motion of a gas with equation of state p = A(S)pY in dimensionality 
n (with values n = i, 2, 3 having physical meaning), where x ~ R n and u~ R n, 

p~- l -d ivpu  ' : 0 ,  ue i u.VU i p- 'Vp: . . :O,  S~.]. u .V,~:  = 0 (1)  

v a l u e s  o f  t h e  a d i a b a t i c  i ndex  y = (n + 2 ) / n  were  f o u n d ,  l e a d i n g  t o  an e x p a n s i o n  o f  t h e  p e r -  
m i s s i b l e  g roup  [2]  and new c o n s e r v a t i o n  laws [3] o f  t h e  form t t  + d i v ( T u  + $) = O, where 

t == z ( / , l u l  ~ - i - , p )  - t , x . u ;  ~ = ~ , ( 2 / u  - x ) .  

It was established that solutions of the dual wave type are isentropic for system (i) in the 
case n = 2. It was shown for Chaplygin's gas-dynamic equation ~oo + K(~ = 0 that all its 
successful approximations which permit an efficient solution of the boundary problems are 
caused by the maximal width of the admissable group [4]. 

The problem of seeking particular solutions of differential equations then received a 
rational group basis. The group analysis methods also proved effective for study of hydro- 
mechanics boundary problems. Menshikov [5] studied questions of invariance of solutions 
of the Cauchy problem, characteristics, and strong discontinuities, in particular, invariant 
extension of the invariant solution of system (i) through a shock wave. Studies of the in- 
variance of problems with a free boundary for the Navier-Stokes equation, performed by 
Pukhnachev [6], made it possible to find a solution to a wide range of problems of this type. 

Further development of Lie's theory in [3], involving development of the Lie-Backlund 
group apparatus, led to construction of nontrivial conservation laws for a number of non- 
linear evolutionary equations, describing wave processes in liquids and gases. The many 
other results obtained by differential equation group analysis in mathematical physics can 
be found in [2, 3] and the journals cited therein. 

Motion with a Free Boundary. This term distinguishes a class of liquid and gas motions 
in which a portion of the moving mass boundary is "free", i.e., not a solid impermeable wall, 
but is determined by some other law of contact interaction with the surrounding medium. 
Typical examples are action on the free boundary of distributed pressure or contact of the 
mass under study with another liquid. Motion with a free boundary is widespread in nature, 
including jet and cavitation flows, wave motion on the surface and in the depths of a strati- 
fied ocean, free motions of a finite liquid mass when thrown, etc. In the corresponding 
hydrodynamics problems a new unknown appears - the region of definition of the solution 
(in fact, the boundary thereof). 

Steady-state (settled) and nonsteady-state (unsettled) motions of liquid with a free 
boundary differ significantly. The former have a large history of many fruitful studies with 
precise formulation in the works of Euler, Kirchhof, Chaplygin, Nekrasov, Lavrent'ev, and 
other eminent scholars. At the same time, as regards nonsteady-state motions of this type, 
in fact no precisely formulated results were ever presented before those of Siberian scholars. 
Therefore developmen t of the corresponding precise theory of nonsteady-state motions of a 
liquid with a free boundary can be considered one of the major attainments of Siberian 
science. 

We consider here potential motions of an ideal incompressible liquid with a free boun- 
dary Ft, limited by an unknown region ~t~R3(x) (where the subscript t denotes time depend- 
ence), located within the field of mass forces with a potential G and constant pressure on 
F t . Thevelocity potential r x) must be a harmonic function within ~t and at x = X ~ F t 
must satisfy the kinematic and dynamic conditions 

X t = V~I~, 2r i [Vr ~== 2(7. (2) 

To Eq. (2) we add the initial conditions 

Xlt=0 = X0, q~h=0=  CPo, (3)  

where t h e  f u n c t i o n  ~0 i s  h a r m o n i c  in  t h e  known r e g i o n  ~0 w i t h  b o u n d a r y  F0 upon which  x = X,. 
The v e c t o r  c o n d i t i o n s  o f  Eqs.  ( 2 ) ,  (3 )  i n  f a c t  r e d u c e  t o  s c a l a r s ,  s i n c e  F t can  be s p e c i f i e d  
w i t h  one e q u a t i o n  in  R3(x ) .  

The d i f f i c u l t i e s  in  a n a l y s i s  o f  t h e  p rob l em o f  Eqs.  ( 2 ) ,  (3 )  a r e  c a u s e d  by i t s  o b v i o u s  
n o n l i n e a r i t y ,  as  w e l l  as  i t s  n o n l o c a l n e s s .  The l a t t e r  f o l l o w s  f rom t h e  dependence  o f  t h e  
v a l u e  o f  Vr a t  each  p o i n t  o f  r t on a l l  v a l u e s  o f  t h e  p o t e n t i a l  r i t s e l f  on r t .  Thus t h e  
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problem of Eqs. (2), (3) does not simplify in any conventional space due to the continuous 
loss of smoothness in the solution with increase in time t. A new mathematical apparatus is 
needed to overcome these difficulties. 

Fundamental in this regard is Oxyannikov's study [7], which first revealed the possi- 
bility solution of linear nonlocal Cauchy problems based on the new concept of a singular 
operator in t]he sale of Banach spaces. Osyvannikov also showed [8] on the basis of model 
formulations that a problem with a free boundary could be correctly formulated within the 
class of analytical functions. This study [8] also obtained an apriori evaluation for small 
perturbations of an arbitrary solution of Eqs. (2), (3), and proved the uniqueness of the 
solution of the corresponding linearized problem. 

The next step was made by Nalimov [9], who first proved the solubility (for small t) of 
the nonlinear Cauchy-Poisson problem of waves in water, in which G = -gy, while Dt is de- 
fined by an impermeable wall y = 0 (the bottom) and a free boundary y = h(t, x) > 0 (the 
planar problem). The existence of a solution within the class of analytical functions was 
established by refinement of Schauder estimates of arbitrary order on the boundary of the 
region and use of the results of [7]. 

Justification of Approximations in Wave Theory. The technique of analysis of problems 
with a free boundary within the class of analytical functions was perfected by Ovsyannikov [I0] 
on the basis of the concept of the quasidifferential operator within the scale of Banach 
spaces. This permitted a significant simplification of the proof of solubility of such 
problems and production of a precise justification of the approximations used in the theory 
of liquid wave motions, such as the linear, "shallow water," etc. 

The concept of precise justification refers to problems in the formulation of which 
there appears; (or is introduced) the parameter e, with the approximate formulation being 
obtained by the formal transition e + 0. In this situation the solution of the original 
problem is, let us say, u(s) and it is necessary to evaluate the deviation thereof from the 
solution u(0} in the approximate formulation. For example, for justification of the linear 
theory, where the solutions is represented in the form u(E) = uo + ~uz(e), where u 0 is the 
fundamental exact solution, independent of e, and Eu1(0) is its linear approximation, it is 
necessary to prove that uz(~) - ul(0)[l § 0 as e + 0. I~ the "shallow water"theory, which 
produces an approximation widely used in the Cauchy-Poisson problem, the unknowns are h and 

(liquid depth and value of the velocity potential on the free boundary). When the 
solution is represented in the form h(~) = ~h1(e), q'(e) = el/2%(g), the functions hi(0), 
~l(0) satisfy the "shallow water" equations. Here we must evaluate the dependence upon 

a = llhl(*) - l~@)II + l iv ,vl (e)  - w ~ ( 0 ) l !  ( /4)  

given the  condi t ion  t h a t  the  i n i t i a l  data  in the  Cauchy-Poisson problems fo r  ( h i ( e ) ,  ~[1(~)) 
and (hl(0) , q'l(O)) are identical. 

A precise justification of the "shallow water" theory was first offered for periodic 
waves [ii], and then for "finite" waves in the planar problem. The results were obtained 
within the scale of Banach spaces of analytic functions where, for example, the norm of the 
function u(x) is defined by its Fourier transform u(g) 

+m 

~:L,,'I,, '~ t ~"L~'l~t~ll~t~ q ' > I ~ l .  (5) 

Analogous results were obtained by Makarenko [12] for problems involving motion of a two- 
layer liquid, and for three-dimensional waves. In all these cases, using a norm in the form 
of Eq. (5) the value of Eq. (4) was found to be ~ < Cg (with the constant C being independent 
of s). 

A new approach to the theory of Cauchy-Poisson waves in the planar problem was developed 
by Nalimov [13]. Using the technique which he developed for precise evaluation of nonlinear 
pseudodifferential operators, he proved the existence and uniqueness of the solution of the 
Cauchy-Poisson problem within the class of functions of finite smoothness and within the 
Jervet class, and gave an exact justification of linear theory. Further development of 
this technique led to justification of the "shallow water" theory within the class of finite 
smoothness functions with the somewhat weaker estimate 6 < Cel/2 of the deviation of Eq. (4). 
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The overall outcome of studies performed on justification of approximate theories of 
waves involve not only providing such approximations with a reliable theoretical basis, but 
also a newly developed analytical apparatus, which can be used for study of analogous prob- 
lems. The results mentioned in this section are presented in detail in [14]. 

The second approximation theory developed in [14], which produces simple finite ex- 
pressions for the basic parameters of combined waves and smooth winds in a two-layer liquid 
beneath a lid was subjected to experimental verification of Bukreev and Gavrilov [15, 16]. 
Figure i shows a comparison of soliton profiles calculated by this theory (line 2) with 
experimental data (circles), obtained at a relative depth of the lower layer of 0.737 and 
density ratio of 0.8. For these conditions the theoretical value of wave propagation velocity 
is 15.1 cm/sec, while the experimental value is equal to 14.9 ! 0.3 cm/sec. Figure i also 
shows soliton profiles calculated for the same initial data by the theory of Kakutani and 
Jamasaki [J. Phys. Soc. Jpn., 45, No. 2 (1978)], using the Korteweg-de Vries equations (line 
i, wave speed 16.1 cm/sec), and by the theory of Keulegan [J. Res. Nat. Bur. Stands., 51, 
No. 3 (1953)] (line 3, wave speed 15.4 cm/sec). 

Steady State Flows with Free Boundaries. Powerful new achievements have also been 
attained in this broad field of hydromechanics, already enriched by classical results. In 
the review [17], coauthored by Lavrent'ev, four problems which the authors considered "funda- 
mental to wave theory" were noted. At the present time significant progress has been achieved 
in all four of these problems. One of these, the creation of a theory of unsettled waves, 
has already been discussed above. 

The second problem is related to the absence of an exact theory of spatial flows with a 
free boundary. The first major step here was made by Plotnikov [18]: in precise formulation 
the existence of a three-dimensional dual-period wave system on the surface of a finite depth 
liquid flow was proven. Solutions ofthe corresponding linear problem, proportional to 
exp i(~nx + my) 

~ , z  ~ := kk th (hok), k = V o)~n ~ -i- m ~, ~ ( 6 )  

where n, m are integers, h 0 is the depth of the unperturbed flow with velocity u 0 in the 
direction of the x-axis, ~ is the ratio of the periods along the y- and x-axes, ~ = h~ I Fr -2 
with Froud number Fr = u0//gh 0 (force of gravity acting along the z-axis). 

The major difficulty in solution of the spatially nonlinear problem is caused by its 
principal difference from the planar problem: the set of % values obtained from Eq. (6) for 
all possible integer pairs (n, m) is full everywhere in the positive semiplane (continuous 
spectrum). Nevertheless Plotnikov proved the existence of a single-parameter family of solu- 
tions of the nonlinear problem (with parameter ~), in which the liquid depth is represented 
by 

h(~, x, g) = ho I ~cos ~ n x .  cosmg  i ~11(~, x, g) 

with [ [ n [ [  < C~. The result was obtained by using a variant of the Nash--Moser formula, pro- 
ducing a special iteration algorithm in the form of a combination of Newton's method with 
smoothing of successive approximations in the scale of Banach spaces of dual-period functions 
of finite smoothness. 

The third problem involves planar waves of maximum (limiting) amplitude, for which 
Stokes derived a slope of 30 ~ at the peak of the waves. Since this was not done precisely, 
since then one has spoken of the Stokes hypothesis. Although the existence of maximal ampli- 
tude waves was established by the English mathematician Toland in 1978, the Stokes hypotheses 
remained an open question. Using a precise analysis of the extension of the analytical 
solution through the free boundary Plotnikov [19] refined Toland's result and finally the 
validity of the Stokes hypothesis. 
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Finally, the fourth problem concerned the principal difficulties of analysis of flows 
over an uneven bottom at Froud numbers less than unity. One planar problem of this class 
was solved by Nalimov [20]. He studied bifurcation of a liquid flow with a velocity u 0 and 
depth h 0 above a bottom with an equation y = sh(x) with a sufficiently smooth function h(x) 
decaying rapidly as Ixl § ~ and small parameter g with the assumption that the Froud number 
u0//gh $ < i. It was proven that a solution exists, which as x +-~ exists to a uniform flow 
moving at velocity u0, while for x § +~ the flow behaves like a periodic wave with period 
2~/m, determined by linear theory. The principal point of Nalimov's theory is the unique 
expansion of the unknown function u(x) into two components 

u : : :~" ;  Otl+, (7 )  

where u~ exponentially as I x l  + +,  i s  a 2~/m-periodic function, and the 
standard factor ~(x)~ C~ is equal to zero at x < 0 and unity at x > i. The proof involves 
a special normalization of functions in the form of Eq. (7) within Banach spaces of finite 
smoothness functions and the technique of pseudodifferential operators. 

A supplementary condition in this result is of interest: the Fourier transform of the 
derivative h'(x) must satisfy the inequality ~'(m) ~ 0. The question of whether this condition 
has some physical meaning, and how generally necessary it is, is still open. 

Steady-state gas-dynamic problems provided Lavrent'ev with a model for creation of the 
theory of quasiconformal mapping [21]. Planar (k = 0) and axisymmetric (k = i) potential gas 
flows are described by a nonlinear system of equations for the velocity potential ~(x, y) 
and the flow function ~(x, y): 

P~'Pq~ = ~l+y ' UhP~Ps ~- --~ls~" ( 8 )  

Given modulus of the velocity q = 17TI and density p = p(q) of the type of system (8) the sign 
of the value d(qp)/dq = pc-2(q 2 - c ~) is defined, where c is the speed of sound: elliptical 
for q < c and hyperbolic for q > c. The wide class of boundary systems for system (8) is 
related to conditions on the boundary F, consisting of specified impermeable walls F 1 and 
free boundaries F 2 (Fig. 2): 

+q,/J,&, o, q,,!q++ h,, .... t.+o (.+.), ~I,,+ - ~ (.,,  y ) .  (9) 

Lavrent'ev's main idea was that solutions of the elliptical system (8) could be accom- 
plished by quasiconformal mapping of the plane (x, y) into the plane (T, ~)- He solved the 
planar problem of infrasonic potential flow of a gas in a channel with curvilinear wails. 

Using developments of the theory of quasiconformal mapping Monakhov [22] proved the 
solubility of a number of planar strictly elliptical problems of the form of Eqs. (8), (9). 
Generalizations of these results to doubly-bound regions obtained by S. N. Antontsev, and to 
turbulent flows of an incompressible liquid by P. I. Plontnikov, were also presented in [22]. 
The study of axisymmetric flows of this type was begin by Plotnikov [23]. For gas flows 
Antontsev [24] first proved that for strictly sonic flow on the free boundary an axisymmetric 
jet equalizes itself at a finite distance. 

Linear Waves. Linear wave theory is based on the methods of Fourier analysis and dis- 
persion relationships. The latter can be found in explicit form [see, e.g., Eq. (6)] only in 
the simplest cases. Any inhomogeneities, including initial stratification of unevenness of 
the bottom, lead to complex spectral problems. The difficulties which then develop are es- 
pecially characteristic of the most interesting and practically pressing problems in spatial 
wave propagation. Therefore within linear theory wide use has been made of various asymptotic 
approximations, including steady phase, long and short wave asymptotes, etc. On the whole 
linear wave theory has become a broad field in which hundreds of studies are published every 
year. Beginning in 1972, the M. A. Lavrent'ev Hydrodynamics Institute of the Siberian Branch, 
Academy of Sciences of the USSR has published annotated bibliographic indices [25-21], which 
reflect the contribution to this field of Siberian scholars. Two particular results will 
be discussed below. 

The waveguide problem, formulated by Lavrent'ev in connection with tsunamis, was solved 
by Garipov [28] ( the same question was studied in approximate formulation in [29]). A linear 
variant of the Cauchy-Poisson problem of Eqs. (2), (3) was considered for waves propagating 
in an infinite layer of homogeneous liquid -i + sh(x) < z < 0 with function h(x) > 0 nonzero 
only over a finite interval, and small parameter E > 0. Here the geometric form o~the bottom 
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Fig. 2 

z = -i + Eh(x) is a submerged mountain ridge - a cylindrical elevation along the y-axis. 
For a velocity potential # with values ~ = # on the free surface z = 0 we obtain a Cauchy problem 

(I,L i K,I . . . . .  O, (l']L=o : :  fo, ~l~t]t=o .... /~,  

where the operator K(p = (J)~!:=n contains within itself all the information on the geometry 
of the region. The form of the wave is determined by the equation ~ = -'J?t" In the represen- 
tation K = K0 + ek, the operator K 0 corresponds to a planar bottom z = -I, while the small 
increment ek depends on the form of the bottom, i.e., on the function h(x) and the parameter 
g. 

A Laplace transform with respect to t leads to study of the resolvent of the operator K, 
which has both a discrete and a continuous spectrum. This problem was studied most fully by 
Garipov in [30], which considered the spectral representation 0(~, v)- Vo 2 ~ v~th ~r~_~ 

of the operator K0, which as an analytical mapping of the complex plane o + 0 (for fixed v) 
is two-layered. Therefore the resolvent of the operator K 0 extends analytically into a two- 
layered Riemann surface with branching point 00 = v th v > 0. It develops that if the area 

S = l'h(x)dx is positive, then in the first layer of the Riemann surface there exists an 

isolated eigenvalue %1 of the operator K, such that 0 < %1 < @0- The corresponding solution 

attenuates with propagation along the ridge by a law t-7, where y is determined by the value 
of S and takes on one of the values 1/2, 1/3, 1/4 in contrast to a planar bottom, where the 
attenuation law is t -I Thus it was shown that an underwater ridge can act as a waveguide 
for surface waves. 

Sturova's results [14] involve study of surface and internal waves, developing in a 
density-stratified liquid with various excitation methods. A comparison of the asymptotic 
patterns of waves produced by uniform horizontal motion of a body and by compression of the 
mixing zone [31] revealed that (in the presence of a density discontinuity) in the second 
case internal waves produce practically no distortion of the boundary and do protude above 
the density discontinuity. It wa~s also established that upon imposition on the translational 
motion of a body of additional oscillations it is possible to excite waves ahead of the body 
with an abrupt increase in wave amplitudes at certain body oscillation frequencies. The 
effect of decrease in wave resistance of a longitudinally oscillating body as compared 
to purely translational motion was observed. 

Flow of a Viscous Liquid with Free Boundaries. Pukhnachev [32, 33] considered the cycle 
of problems involving free boundaries for the Navier-Stokes equations in precise formulation. 
Consideration of surface tension o introduces into the equations together with the Reynolds 
number Re = Vs a second similarity criterion, the Weber number We = pV 2 E/o, the values of 
which defines bifurcation flow regimes. Solutions of problems of the motion of a liquid film 
coating the surface of a horizontally rotating cylinder in a gravity field and of equilibrium 
forms of a weightless capillary liquid partially filling a cylindrical capillary and rotating 
together with the cylinder about the latter's axis at constant velocity were achieved [34]. 

Approximate models of wave formation in adherent films of a viscous liquid were presented 
in detail in a monograph by Nakoryakov et al. [35]. This problem was first solved in exact 
formulation by Pukhnachev [36], who proved the existence of rolling waves as a bifurcation 
motion of the travelling wave type against a background of a planar flow with rectilinear 
trajectories and semiparabolic velocity profile. A single-parameter family of solutions exists 
for any Weber number and sufficiently small Reynolds number. 

Nonsteady state motions of a ring of viscous incompressible liquid with free boundaries 
were considered by Bytev [37]. It developed that in the absence of surface tension the internal 
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radius of the ring increases without limit, depending on the initial peripheral velocity dis- 
tribution, either linearly with time t (like a ring of ideal liquid) or by a tl/2 law. 
When surface tension is considered, a rotating ring behaves completely differently. Here the 
characteristic: parameter B (the Weber number) is defined by the initial conditions in terms 
of the angular momentum and the ring area. Lavrent'eva [38] proved the existence of a 
critical value ~, ~ 5.17, dividing different regimes of steady state motion: for ~ > ~, 
there are two steady state solutions, while at ~ = ~, there is one, and for ~ < ~, such 
solutions do not exist. For unsteady state motions with ~ ~ $, or as t + ~ the solution 
tends to steady state, or after a finite time the ring transforms to a circle. The exis- 
tence and uniqueness of the corresponding solution of the Navier-Stokes equations are 
proved. Thus it was established that for the given description of the process the transfor- 
mation of the ring into a circle is irreversible. 

Phenomena within the boundary layer of a nonuniformly heated liquid are related to the 
temperature dependence of surface tension. The intensity of such boundary layer flows is 
determined by the Marangoni number Ma = s 2, where o T is the surface tension temperature 
coefficient, and AT is the characteristic temperature differential. Asymptotic simpli- 
fication of the problem as Ma + ~ leads to a nonclassical boundary problem for the system of 
Prandtl equations: instead of the condition of adhesion at a rigid surface the tangent 
stress on the free boundary is specified. The first results for the two-dimensional non- 
steady state ]problem of equations describing Marangoni boundary layers were achieved by 
Pukhnachev [39]. Using the theory developed by Kuznetsov [40] an asymtotic method was deve- 
loped for calculation of thermocapillary convection in a liquid colum~n, the lateral surface 
of which is free, while constant (but different) temperature values are specified on the face 
surfaces. 

A contribution to the theory of the Prandtl boundary layer was made by Khusnutdinova 
[41], who indicated sufficient conditions for existence "on the whole" of a two-dimensional 
steady state !boundary layer with increase in pressure down the flow. 

Inertial Motion of a Finite Liquid Mass. The development of Lavrent'ev's idea [42] of 
modeling motion of an explosion-driven soil mass as motion of an ideal incompressible liquid 
led to the question of stability of the motion of a finite liquid mass with free boundary. 
This question has meaning if an exact solution of the Euler equations defined for the time 
interval 0 < t < ~ is known. Such solutions exist, for example, for the class of motions 
with velocity field linear in the coordinates [43]. In particular, they describe motion of 
liquid ellipsoids and lead to a Lagrangian dynamic system on a manifold [44]. A stability 
analysis performed by Pukhnachev and Andreev showed that ellipsoid motions were stable in 
integral norms, but unstable in a uniform metric due to the possibility of formation of long 
"whiskers," localized in narrow regions of the free boundary [45]. 

Ih the general case of potential motion of a liquid mass having volume V, density @, 
and kinetic energy K, the diameter of the liquid mass d(t) + ~ as t + ~, Nalimov and Pukhnachev 
[46] obtained the asymptotic estimate 

An analogous result is also valid for turbulent motions, if the measure of the vorticity 
Icurlvl ID(v): D(v)] -'~ with deformation rate tensor D(v) for the velocity field v is uniformly 
limited by unity. Highly turbulent motions of a liquid volume may be compact for all t. 
Pukhnachev [47] found a family of rotationally symmetric steady state motions of a finite 
liquid mass with a toroidal free surface - a hydrodynamic analog to closed plasma configura- 
tions. 

Spatial shock-wave interactions. Generalization of classical results on propagation 
and interaction of strong discontinuities with one-dimensional gas motions in spatial motions 
involves the necessity of considering the possible curvilinear form of the front. Studies 
in this field were begun by Teshukov [48], who was the first to establish the existence of 
piecewise-analytical solutions for all possible configurations which develop upon decay of an 
arbitrary discontinuity (of the first sort) on a specified analytical surface. He also solved 
the general problem of regular interaction of two curvilinear shock waves propagating in a 
space R3(~) [49]. 

Let F t be the line of interaction of the incident fronts of the shock waves at time t 
(Fig. 3), Vnl and Vn2 being the normal propagation velocities of the fronts relative to the 
gas. Then the relative normal velocity w of propagation of the curve F t is given by the 
expression 
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where n I and n z are unit vectors of the normals to the incident fronts. At the initial 
moment t = 0 of first contact of the fronts lwl = ~. The existence of a piecewise-analytical 
solution of the problem has been proven for the time interval defined by the inequality 
lwl > c, the speed of sound in the reflected fronts. For t > 0 the regular interaction 
stage is always described uniquely by a "weak" reflected discontinuity in contrast to steady 
state oblique reflection, where the question arises of choosing one of the possible dis- 
continuities - "weak" or "strong." 

The principles of shock wave propagation through a specified background (state ahead 
of the wave) were studied by Blokhin [50]. For a natural formulation of the initial-boundary 
problem the existence of a solution within the class of finite smoothness functions has 
been proved, and estimates have been obtained from which the stability of the shock wave 
follows. 

Hydraulic Processes. This general designation combines studies on mathematical modeling 
and calculation of unsteady state liquid motions in open waterways, channels, and tubes. 
Efforts in this pressing practical direction were organized by O. F. Vasil'ev. On the basis 
of the Saint-Venant and Boussinesq models, using the methods of Khristianovich, Arkhangel'skii, 
and Godunov, a number of authors developed effective algorithms and application program 
packages for hydraulic calculations of floods and large rivers, motions of a continuous wave 
upon destruction of a dam, flows in complex waterways with rings and branchings, and hydraulic 
shock phenomena in pipe systems. A qualitative description of results obtained in this 
field was given in [51, 52], which also contains a complete listing of published studies. 

A principal contributions to this field was creation of calculation methods for branched 
one-dimensional hydraulic systems. Here a new type of boundary problem arises for the sys- 
tem of differential equations with partial derivatives specified on complexes (graphs). 
The problem consists of considering the topological structure of the complex in formulating 
consistent boundary conditions at the peaks of adjacent edges, insuring correct formulation 
of the problem on the complex as a whole. Atavin produced a solution [53] for subcritical 
flows in river waterway systems, forming a "tree" type complex. A monograph by Voevodin and 
Shugrin [54] described solution of this problem for a number of concrete cases, for example, 
hydroshock phenomena, unsteady state gas motions in a tube system, etc. Even at present this 
problem in its general form is far from complete solution. 

Filtration Flows. Studies of filtration flows were commenced by P. Ya. Kochina. At 
her initiative efforts were exerted in the field of mathematical modeling of moisture and 
salt transport processes in soils during soil improvement. Also studied were phenomena such as 
formation of fresh water lenses above salt water, combined motion of soil and surface waters, 
unsteady-state moisture-salt transport in the aeration zone, drainage flows, salt accumula- 
tion in a root-containing soil layer, etc. Some achievements in this direction are presented 
in [55]. The next stage in development of filtration theory with consideration of complex 
hydrogeological conditions and other factors of practical importance, a multifaceted valida- 
tion of the mathematical models used - from establishing the correctness of boundary problem 
formulations to cretion of programs and carrying out concrete calculations, was described by 
Antontsev et al. [56]. 
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Questions of steady state filtration lead to problems with an elliptical system of 
differential equations. One of the practical problems is determination of filtration flows 
in a homogeneous soil layer, passing from a system of channels to interposed drains in the 
presence of infiltration or evaporation from the free surface. For the case of a planar 
periodic system of channels and drains ~mikh [57] found a solution of the linear problem by 
the conformal mapping method. Analysis of nonlinear processes required methods more powerful 
than Lavrent'ev's conformal mapping theory. The development of this theory is presented by 
Monakhov [22] who, in particular, considered problems of nonlinear filtration and established 
the correctness of formulation of the basic nonlinear boundary problems. 

Study of filtration of immiscible liquids is of practical importance in connection with 
the problem of increasing output of petroleum and gas formations. For this purpose a multi- 
faceted analysis was performed of the well known Masket-Leverett model, consisting of con- 
tinuity equations and Darcy's law for each component with consideration of capillary pressure 
on the interphase boundary. The first results in the linear variant of this model with a 
numerical realization were achieved by A. N. Konovalov [58]. A complete analysis of correct- 
ness of the fundamental boundary problems, which led to discovery of unusual effects, was 
performed by Monakhov and Antontsev [59]. 

The original model was reduced to a quasilinear system for "reduced" pressure p(• t) 
and saturation s(x, t) 

mx z div (A',,a.V s i A~,Vp '  ~'o), dix (AIvp I [ ) : 0  ( i 0 )  

with m(x) > 0, symmetrically positively defined filtration tensor for the homogeneous 
liquid K0(x) , phase permeability tensors K, : =t:.,K o, K ~ ~K,, and functions a(s), k01(s), 
k(s), f0(~, s), [(x, s) defined by the porosity of the medium. Boundary conditions for 
system (I0) are specified on impermeable surfaces as well as the boundaries of the well and 
contacts with unmoving liquid. An initial value s(~, 0) is specified for the saturation. 
In this formulation the specifics of two-phase filtration consist of the fact that saturation 
must satisfy the inequalities 0 < s < i, while for s = 0 (or s = I) degeneration of system 
(i0) occurs, where simultaneously kl~(0) = 0 and either a(0) = 0 or a(0) = ~. 

Proof was offered in [59] that the principle of the maximum was valid for the solutions, 
confirming satisfaction of the inequalities 0 < s < i, and with certain additional conditions, 
the inequalities ~ ! s < 1 - 6 with constant 6 > 0. The following solution properties 
were also established: for the degeneration a(0) = 0 the propagation speed for perturbations 
from the initial state proves finite, while for a(O) = ~ after a finite time the solution 
stabilizes to s = 0 over the entire region of its definition. In other words, despite the 
overall diffusion character of the filtration process, in the cases indicated the pure phase 
region is filled by the mixture by propagation of some front at a finite velocity, or else 
after a finite time the entire region is purified of one of the phases. 

Steady State Turbulent-Potential Flows. Observations have shown that near a rough body, 
a projection or identation in the bottom regionappears in which liquid motion occurs over 
closed trajectories. In the 1960's Lavrent'ev proposed the following scheme of two=dimen - 
sional flows of this type within the framework of the ideal incompressible liquid model: in 
the circulation zone motion occurs with a constant vorticity, while outside it is potential 
with the velocity field being continuous everywhere. Studies of this topic are considered 
in detail in [i]. 

The nonlinear models with "pasting" of potential and turbulent flows which develop in 
this model were the subject of a number of studies [60-62], which clarified the fact that 
in individual cases it is possible to prove the existence of a solution. In addition numerical 
calculations performed demonstrated that the problem with "pasting" can have more than one 
solution - tlnis question of uniqueness remains open at present. 

Turbulent Rings. When a finite volume ~ich is a pars of an infinite viscous liquid is 
impulsively set in motion at constant velocity, after some time the motion takes on the form 
of a turbulent ring propagating within the liquid. Quantitative description of this pheno- 
menon is one of the most complex and pressing problems of hydromechanics. 

At the suggestion of S. A. Khristianovich, Onufriev [63] performed a theoretical study 
of the ascent into the atmosphere of the characteristic mushroom-like cloud produced by a 
powerful explosion, which is similar to a turbulent ring. The action of repulsive forces 
on the heated gas cloud, inhomogeneity of the atmosphere, and the turbulent character of the 
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motion were considered. On the basis of conservation laws and a number of empirical 
relationships a model of this phenomenon was constructed in the form of a system of ordinary 
differential equations. The numerical solution determined the dimensions of the ascending 
cloud and the ascent height as functions of time with good agreement with experimental data. 

Lavrent'ev called attention to two significant properties of turbulent rings: the 
relatively low resistance to motion and the ability to transport an impurity. At his initia- 
tive many experiments were performed for the purpose of determining the structure and para- 
meters of turbulent ring motion. The experiments of Akhmetov and Kisarov [64] measured 
velocity fields in turbulent rings. A. A. Lugovtsov, B. A. Lugovtsov, and V. F. Tarasov 
[65] studied the laws of motion of turbulent rings formed in various manners over the range 
of initial radii 1-200 cm, velocity 0.i-i00 m/sec, and Reynolds number 103-107 

Analysis of the experimental results led to the following conclusions. For Reynolds 
numbers Re > 104 the liquid motion in the ring is turbulent. Upon combination of the ring 
formation stage its radius R(t) increases linearly with distance traversed L(t): 

I~(t) = lto I- a L ( l )  (~ : :  cons t ) .  (ii) 

The quantity ~ can be assumed quite precisely in experiment and lies in the range 10-2-10 -3 . 
It depends on ring creation conditions and defines the structure of the average motion within 
the ring. Tarasov's experiments [66] showed that beginning at a Reynolds number of the 
order of 105 , ~ arrives at a universal value of 3"10 -3 . 

On the basis of these experimental facts and the law of conservation of turbulent momen- 

P=+j ' r  X ~ d v ,  where ~ is the average vorticity, Lugovtsov [67] developed the hypo- rum 

thesis of self-similarity of motion and structure of the turbulent ring, with the unique 
defining parameter being the turbulent momentum P0. This hypothesis agrees with Eq. (ii) 
and leads to a law of motion 

L ( t )  - - ~  1 ]~ t - -  1 . 

The hypothesis of self-similarity of turbulent ring structure leads to a time dependence of 
the turbulent viscosity coefficient 

v,(O:=~t'~/:~l -j/:' (~ =coJ~s,) 

and formulation of a boundary problem to find the vorticity distribution. In the system of 
differential equations of this problem X plays the role of a small parameter in the lower 
order derivatives. In the limit of "vanishing viscosity" X + 0 Lugovtsov [68] formulated a 
boundary problem of the "pasting" type, containing no empirical constants, which was solved 
numerically. 

Comparison of calculation results with experimental data on vorticity measurement 
indicated a shortcoming of this theory: in reality because of "gyroscopic elasticity" of 
the rotating liquid, within the core of the vortex, turbulence is suppressed. Empirical 
dependences were proposed for turbulent viscosity as a function of the analog of the 
Richardson number for the rotating liquid, which allowed achievement of agreement with 
experiment on vorticity distribution within the framework of the same model [69]. On the 
whole the problem of adequate description of motion of turbulent rings has been advanced 
greatly by the above studies, but cannot yet be considered completely solved. These studies 
have found concrete application in developing a new turbulent-powder method of extinguishing 
fires in gas and petroleum wells [70]. 

Lavrent'ev's idea of reducing the resistance to motion of a body in a viscous liquid 
by organizing the flow in analogy to the flow in a turbulent ring was evaluated in [71]. 
In experiments on flow of vapor over rotating cylinders Sennitskii [72] demonstrated that 
because of rotation the power required for translational motion can be reduced by an amount 
of the order of 30%. 

Linear (tornado-like) Vortices. At the present time the formation mechanisms and 
structures of intense atmospheric vortices (hurricanes, waterspouts, tornados, "dust devils") 
have not been fully clarified. The difficulties of studying these phenomena under natural 
conditions has stimulated creation of laboratory models of tornado-like vortices. However�9 
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it has not been possible to reproduce the entire set of natural conditions accompanying atmos- 
pheric vortices on a small scale. Yet laboratory modeling, observation, and study of tornado- 
like vortices under fully controlled conditions has permitted a deeper penetration into the 
physics of such flows and encouraged the development of useful new ideas for explanation of 
phenomena in the atmosphere. 

A review of recent studies in this field was presented in [73]. From experimental 
determination of the structure and parameters of a tornado-like vortex formed in a rotating 
liquid heated from below Nikulin [74] constructed an approximate model and obtained the 
relationship 

v ~ ~ loe~, /~ ,  ( 1 2 )  

where V is the maximum rotational velocity, ~ is the specific thermal expansion coefficient, 
is the temperature difference between the core of the vortex and the external flow region, 

g is the acceleration of gravity, and h is the height of the vortex. Equation (12) agrees 
well with laboratory experiments and available data on atmospheric vortices. 

Flows in vortex chambers have a structure analogous to that of tornado-like vortices. 
Studies of this type of turbulent flow were described by Gol'dshtik [75]. There, and also 
in [76] a great deal of experimental material on the structure and basic parameters of such 
flows was presented. The principle of a minimum in the rate of dissipation of kinetic energy 
into thermal was proposed for calculation of turbulent flows, making it possible to determine 
turbulent viscosity without use of empirical constants. For the case of a vortex chamber the 
turbulent viscosity is a function of flow torsion and the energy dissipation rate has two 
minima of differing depth [77]. These correspond to two different flow regimes - direct flow 
and circulation (with an internal circulation zone - a descending flow in the tornado core). 
Fow low torsion values only the direct flow regime is possible (there is only one minimum). 
With increasing torsion the second minimum appears, corresponding to the circulation flow, 
which with further increase in torsion becomes deeper than the first, and the circulation 
regime is realized. For a given torsion two regimes can be achieved. Experiments have ob- 
served a change in regime with slight change of the flow input parameters. The theoretical 
results are in good agreement with experimental data. 

Gol'dshtik [75] solved the steady state self-similar problem of interaction of a turbu- 
lent filament with a plane in precise formulation. It was shown that the problem is uniquely 
soluble at small Reynoldsnumbers and has no solution at Reynolds numbers exceeding some 
critical value. The physical meaning of this result still remains unclear. 

Hydrodynamic Stability. Two directions have developed intensely within this branch of 
hydrodynamics: stability of laminar flows of viscous liquids, in connection with the problem 
of laminar-turbulent transition, and stability of rotating flows of an ideal liquid, in 
connection with the tornado problem. 

In [78, 79] experimental measurements were made of the correlation function spectrum for 
one velocity component in a Couette flow with rotating external cylinder. The observed 
evolution of the spectrum reflects a sequential change inflow regimes (bifurcation) and 
offers convincing evidence in favor of modern theoretical concepts of the mechanism of the 
transition to turbulence - the development of a singular attractor in the phase space of 
some (adequate) finitely dimensioned dynamic system. This conclusion has been confirmed 
by numerical experiment on a model. 

The experiments of [80, 81] studies self-oscillation regimes, development of three- 
dimensional structures, and resonant interactions in Poiseuille flow and in a boundary layer 
in the laminar-turbulent transition region. Characteristic turbulent "lambda structures" were 
observed, appearing upon development of three-dimensional self-oscillations. 

A monograph by Gol'dshtik and Shtern [82] was dedicated to solution of flow stability 
problems in channels and boundary layers, and jet and MHD flows. Effective numerical methods 
were developed, permitting reliable calculation of eigenvalues for any flow parameter value 
and determination of the stability model. The escalator model was proposed for generation of 
finite amplitude self-oscillations, and the character of branching of such solutions was 
studied. Based on this approach, [83] performed a calculation of threshold self-oscillations 
in a Poiseuille flow. First, a periodic wave branches from the initial flow, which can 
be modeled satisfactorily by the monoharmonic approximation. The following bifurcation deve- 
lops by a parametric resonance mechanism upon interaction of the fundamental wave and a 
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symmetric pair of oblique waves with doubled (as compared to the fundamental) period. The 
self-oscillations which develop are three-dimensional, and their structure corresponds to the 
experimentally observed "lambda structures" [80, 81]. A threshold curve was obtained des- 
cribing the dependence of critical Reynolds number on perturbation level, which agreed with 
experimental data on the laminar-turbulent transition. 

Vladimirov's studies of stability of rotating flow of an ideal incompressible liquid 
[14, 84] made use of an analogy between the effects of density stratification and rotation. 
It was shown in linear formulation that any rotating flow, with the exception of solid body 
rotation, is unstable: there exist perturbations (belonging to the continuous spectrum) 
which increase by a power law with time. Sufficient stability conditions were found for 
perturbations of the discrete spectrum, distinguishing a wide class of flows. In the 
nonlinear problem classes of flows were distinguished, for which the analogy between density 
stratification and rotation transforms to an equivalence (or closeness) of the exact equa- 
tionstions of motion. In these classes, with the presence of some form of symmetry (screw, 

rotational, axial, translational) a number of nonlinear stability criteria were obtained [85]. 

A theory of resonant instability of linear vortices arising upon core deformation was 
proposed in [86]. Conditions for development of bending of vortices observed in a specially 
formulated experiment agreed well with calculation results. 

Turbulence. An adequate mathematical model of the phenomenon of turbulence still re- 
mains a provocative problem. Previously proposed concepts of coherent structures and singular 
attractors have led to a deeper understanding of its complexity. But the absence of an 
effective closed mathematical description of turbulent motions greatly limits the possi- 
bilities for theoretical (and numerical) analysis. The state of affairs is such that basic 
progress can only be achieved in close collaboration with experiment. 

At the Siberian Branch many experiments have been performed to study turbulent flows, 
which have produced a significant contribution to development of measurement methods and led 
to a number of important conclusions. A large cycle of studies in this field was summed up 
by Kutateladze et el. [87]. In particular, Khabakhpasheva [88] developed a method for 
stroboscopic flow visualization, which permitted photography of discontinuous tracks of small 
light-scattering particles with subsequent semiautomated computer processing of the photo- 
graphs to obtain the instant velocity field, mean values, and a number of statistical charac- 
teristics of the flow. This made it possible to clarify turbulent flow structure in the 
direct vicinity of a wall in the viscous sublayer, where measurements with total pressure 
head tubes and thermoanemometers are very inaccurate. The advantages of the new method 
manifest themselves especially clearly in the study of flows with polymer solutions, which 
in some cases significantly reduce hydraulic resistance for water flow in tubes [87]. The 
large volume of experimental results obtained by this method provide a reliable basis for 
verification of theoretical models of near-wall turbulence. The ability to simultaneously 
measure velocity at many points in space is important for experimental detection of coherent 
structures at high Reynolds numbers. A similar method for measurement of free turbulent 
shear flow was used in [89]. There expulsion of turbulent rings from the chaotic flow 
region was observed. 

Bukhreevs' work [90] on measurement of statistical characteristics of pressure pulsations 
in a hydraulic spring is of interest from the methodological viewpoint. This was one of the 
first studies which used a computer for processing of results, and solved a number of problems 
involving automation. This study was the first to establish experimentally that the proba- 
bility characteristics of turbulent pulsations differ significantly from a Gaussian distri- 
bution. 

In experimental studies by Bukreev, Vasil'ev, and Lytkin [91] of the turbulent wake be- 
hind bodies of various forms, evidence was obtained for the first time that despite pre- 
viously held concepts, the statistical characteristics of turbulence in the wake preserve a 
"memory" of the details of the form of the body flowed over at very large distances down the 
flow. Because of this, doubts were raised as to the possibility of obtaining a universal 
model for description of turbulent flows in terms of single point moments. The data also 
indicated the significant effect of large vortices (coherent structures) on statistical flow 
characteristics. However the experiments in question, like other experimental studies in 
this field, were performed at limited Reynolds numbers, while experimental evidence exists 
that at sufficiently high Reynolds numbers universality may exist. This important matter re- 
quires further research. 
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This series of experiments involved turbulent flows in tubes for steady and pulsating 
flow rates. Bukreev et al. [92] obtained data on characteristic fluctuations of velocity 
pulsations (unique in the published literature). Veske and Sturov [93] measured all compo- 
nents of the turbulent stress tensor in a flow with torsion. Bukreev and Shakhin [94] ob- 
served the effect of inertia (constancy) of turbulent pulsations with change in the mean 
velocity profile for the case of pulsating flow rate. 

In [95] an original experimental device was developed which permitted measurement of 
the statistical characteristics of a turbulent flow in which there is no shift in average 
velocity but a gradient exists in velocity pulsation intensity in the direction perpendicular 
to the flow. The results obtained (especially those of the last experiment) provide a rich 
source for verification of various theoretical models pretending to univerality. 

Turbulence suppression by rotation was studied in the experiments of Tarasov and 
Vladimirov [96, 97] on impurity transport by a turbulent ring. It was shown that even for 
developed turbulence in an atmospheric vortex, turbulent transport of an impurity is practi- 
cally absent. Turbulence suppression was demonstrated especially clearly in a special ex- 
periment which allowed observation of this phenomenon under steady state conditions [98], 
with an experiment with dye [69] being especially demonstrative. Turbulence suppression can 
be explained qualitatively by gyroscopic elasticity of the liquid rotating as a solid body. 
In the cores of concentrated vortices, where the liquid rotates almost like a solid body, 
turbulent velocity pulsations are of a wave character (inertial waves) and do not transport 
impurities [97]. The same conclusion follows from the analogy between behavior of small 
perturbations in a rotating and a density-stratified liquid [98]. Semiempirical models of 
suppression based on these studies were used to calculate the structure of a turbulent 
vortex ring [69]. 

At the present time theoretical description and calculation of turbulent flows is 
essentially based upon semiempirical models, the construction of which relies on analysis 
of experimental results and involves use of hypotheses and principles which are not well 
grounded. Results obtained in this manner have limited scientific significance, although 
this remains at present the only path for theoretical study of concrete turbulent flows. This 
field is widely represented in studies performed at the Siberian Branch. A large cycle of 
studies of the basic principles of average flow in a near-wall turbulent boundary layer with- 
out use of empirical coefficients was described by Kutateladze [99]. 

The third level closure model was used for numerical calculation of complex turbulent flows 
in [100-102] with consideration of temperature and density stratification. Results of calcu- 
lation of a turbulent wake behind a cylinder and turbulent convection in a liquid layer per- 
turbed by a fluctuating buoyancy force (the "thermocline" problem) agree well with experi- 
mental data. This model describes correctly and with good accuracy the experimentally ob- 
served phenomena of contragradient diffusion of an impurity, temperature, velocity pulsation 
intensity, etc., which are not described by models with lower level closure. 

A model describing development of the layered structure in a continuously stratified 
liquid was proposed by Lyapidevskii [14]. It was shown that the mechanism of vertical mass 
(momentum) transport through a stable boundary is related to excitation of short waves by 
long ones with subsequent upsetting, leading to turbulent mixing. In [103, 104] a new model 
of turbulent mixing was proposed for flows with shear, considering the presence in the flow 
of "large vortices" and intermittency, and an analytical solution was found for the problem 
of decay of a tangential discontinuity. 

A statistical description of weakly nonlinear interacting waves on the surface of a heavy 
liquid was carried out Zakharov and Filonenko [105]. A homogeneous, isotropic, weak (wave) 
turbulence was considered. In this case two basic assumptions are made to achieve closure: 
randomness of the phase distribution of individual modes and smallness of the sixth order 
;emiinvariants, which make it possible to obtain a kinetic equation for the second order 
correlation function spectrum. Assuming existence of an inertial interval (in analogy to 
the Kolmogorov-Obdukhov interval in conventional turbulence) dividing the source and drain 
in wave number space, the energy spectrum was determined. 

To describe supercritical regimes Gol'dshtik [106] proposed a structural turbulence 
model, based on the concept of a random field in the form of a set of ordered structures, 
randomly distributed in space and time. Application of this approach to the simple model 
of thermoconvective flow (the Lorentz attractor) showed that it described satisfactorily not 
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only integral characteristics, but also the fine structure of the turbulent regime spectrum 
near the threshold at which they develop. 

Aeroelasticity. Studies of the interaction of oscillating blades of a lattice with an 
incident flow are related to the problem of aeroelasticity of turbine blades. The achieve- 
ments of the first stage of this effort were described in monographs by G~relov, Kurzin, and 
Saran [107, 108]. 

Using the example of fluid flow through a lattice of thin profiles oscillating in an 
infrasonic flow, a number of unique features were discovered in the behavior of aerodynamic 
characteristics, primarily force and moment coefficients, which determine a qualitative 
difference from the corresponding characteristics of isolated profiles. Hydrodynamic inter- 
ference of neighboring lattice profiles can lead to a significant reduction in the critical 
velocity at which flutter occurs. Compressibility of the fluid has a significant effect on 
aerodynamic characteristics of the lattice not only at large infrasonic velocities, as occurs 
in a steady state flow, but also at low velocities if the oscillation frequencies are high. 
The second unique feature is related to development of acoustical resonance, where the 
frequencies of the perturbing forces coincide with natural oscillation frequencies of the 
fluid in the lattice region. To determine acoustical resonance regimes the problem of 
natural oscillations of a gas flowing over a lattice of plates was solved. 

The next stage of development in this field involved complication of lattice and flow 
models, multifaceted verification of these models, and practical application of the results 
obtained. Flow of an ideal incompressible fluid through a lattice of vibrating profiles of 
arbitrary form was considered [109]. By numerical solution of the initial-boundary problem, 
which considered evolution of turbulent wakes leaving the profiles, Ryabenko [ii0] established 
that for small profile oscillations the form of the waves does not have a significant effect 
on aerodynamic characteristics of the lattice. Therefore lattice aerodynamic characteristics 
obtained by solution of the linear problem can be used with a sufficient degree of reliability. 
Saren studied solubility conditions and found a general solution of the corresponding bound- 
ary problem. Algorithms were constructed for solution of the problem of interaction of mutu- 
ally moving lattices of arbitrary profiles with consideration of turbulent wakes by Yudin 
[iii], while problems of spatial flow of an ideal incompressible fluid through a ring lattice 
of thin arbitrarily shaped blades was studied by Ryabchenko [112]. 

The relationship between behavior of lattice aerodynamic characteristics in the vicinity 
of acoustic resonance regimes and the form of the corresponding natural oscillations was es- 
tablished by Kurzin [113]. A model was proposed in which oscillation energy loss near the 
lattice of plates due to radiation and formation of turbulent wakes is compensated by ex- 
ponential growth of oscillation amplitude with removal from the lattice. This led to a 
generalization of the classical Sommerfeld radiation condition (in the absence of flow, the 
lattice extends along the y-axis) in the form 

(x, u, z) E a .  0xp (ny i I x I ( I �9 

The p r o b l e m  o f  n a t u r a l  o s c i l l a t i o n  v a l u e s  w i t h  s u c h  a r a d i a t i o n  c o n d i t i o n  was s o l v e d  by 
S u k h i n i n  [ 1 1 4 ] ,  who p r o v e d  t h e  d i s c r e t e  n a t u r e  o f  t h e  s p e c t r u m .  
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O. F. Vasil'ev, M. A. Gol'dshtik, V. B. Kurzin, V. N. Monakhov, V. V. Pukhnachev, V. M. 
Teshukov, and other colleagues for materials provided, which were used in the compilation of 
this review, as well as E. Z. Borovskaya for her preparation of the manuscript. 
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HYDRODYNAMICS OF EXPLOSIONS 

V. K. Kedrinskii 
UDC 534.222+532.528+532.5.031+ 

532.5.013.2+622.235.5 

The hydrodynamics of explosions, as a significant scientific specialization of the 
physics and mechanics of explosion processes, encompasses many problems, ranging from the 
generation and propagation of shock waves to the behavior of media under explosive loads. 
Their solution also involves the development of new experimental methods, and the creation 
of mathematical models of the observed effects. The last problem, however, is in many ways 
simplified, since the wide spectrum of flows arising in this case is described by a quite 
limited number of models. One of the most widely employed and simplest models is the model 
of an ideal incompressible liquid. It is successfully employed for the theoretical analysis 
of many phenomena of a typically explosive character and is based on the real possibilities 
of neglecting the strength and plastic properties of the media, friction forces, and 
compressibility under the extremely high pressures generated by the explosive loads. The 
use of such extremely simplified models often makes it possible to understand the essence 
of the process, though in making comparisons with experimental data they must also be 
modified. 

This review is concerned with the analysis of the basic results of experimental and 
theoretical research on the mechanics of explosives, carried out in the Siberian Branch of 
the USSR Academy of Sciences over a period of 30 years from 1957 to 1986, in three important 
areas: shock waves in underwater explosions and cavitation, the problems of cumulation and 
jet flows, and explosive processes in soils. 

Many of the studies enumerated below appeared owing to the attention and often the 
ideas of M. A. Lavrent'ev, which ultimately turned out to be the foundation for the under- 
standing of the phenomena as a whole. 

Shock Waves in Underwater Explosions and Cavitation. Cavity Dynamics. One of the most 
important problems in the study of underwater explosions is the analysis of the dynamics 
of a cavity with detonation products as a source responsible for the formation and the para- 
meters of explosion-generated shock waves (SW). This problem is also of interest for a wide 
range of problems of interaction of SW with isolated cavities and an ensemble of cavities, 
development of bubble cavitation, formation of SW in underwater explosions of charges with a 
complex shape, etc. These questions were studied in detail at the Institute of Hydrodynamics 
of the Siberian Branch of the USSR Academy of Sciences from 1960 to 1980 and were associated 
with the clarification of the fundamental aspects of the effect of the compressibility of a 
liquid, the symmetry of flow, and the state of the gas in a pulsating cavity. 

V. K. Kedrinskii [1-3] was the first to derive in the acoustic approximation a general 
equation describing the dynamics of a cavity in two-dimensional, cylindrical, and spherical 
geometries (v = 0, i, 2). The result is based on the analysis of a one-dimensional, potential, 
isentropic flow of liquid, described by the system of equations (acoustic approximation) 

c~;~l~t~ - ~D,,. v d ' ( l  .... v / 2 ) ' 2 r  ~ O. t l~  _ :  r " / ~ 2 ,  ( 1 )  

o 

where ~l~ rV/~ q ; ~ ~,, [ i,~,/2 ~,~ !dp/p From here it follows that in the two-dimensional and 

spherical cases the system makes it possible to derive exactly and in the case of cylindrical 
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